Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338689

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.


Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Timo/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Leucemia de Células T/metabolismo , Apoptose , Proliferação de Células , Microambiente Tumoral
2.
Cell Commun Signal ; 22(1): 104, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331871

RESUMO

Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners. These interactions are not accidental; they are critical for cancer cells to exploit the immune functions of neutrophils and successfully extravasate. In another strategy, tumor cells mimic the behavior and characteristics of immune cells. They release a suite of inflammatory mediators, which under normal circumstances, guide the processes of endothelium reshaping and facilitate the entry and movement of immune cells within tissues. In this review, we offer a new perspective on the tactics employed by cancer cells to extravasate and infiltrate target tissues. We delve into the myriad mechanisms that tumor cells borrow, adapt, and refine from the immune playbook. Video Abstract.


Assuntos
Células Endoteliais , Neutrófilos , Movimento Celular , Neutrófilos/metabolismo , Células Endoteliais/metabolismo
3.
Plants (Basel) ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005711

RESUMO

Hemp bioproducts hold great promise as valuable materials for nutraceutical and pharmaceutical applications due to their diverse bioactive compounds and potential health benefits. In line with this interest and in an attempt to valorize the Lazio Region crops, this present study investigated chemically characterized hydroalcoholic and organic extracts, obtained from the inflorescences of locally cultivated Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties. In order to highlight the possible chemopreventive power of the tested samples, a bioactivity screening was performed, which included studying the antimutagenic activity, radical scavenging power, cytotoxicity in human hepatoma HepG2 cells, leakage of lactate dehydrogenase (LDH) and modulation of the oxidative stress parameters and glucose-6-phosphate dehydrogenase (G6PDH) involved in the regulation of the cell transformation and cancer proliferation. Tolerability studies in noncancerous H69 cholangiocytes were performed, too. The organic extracts showed moderate to strong antimutagenic activities and a marked cytotoxicity in the HepG2 cells, associated with an increased oxidative stress and LDH release, and to a G6PDH modulation. The hydroalcoholic extracts mainly exhibited radical scavenging properties with weak or null activities in the other assays. The extracts were usually well-tolerated in H69 cells, except for the highest concentrations which impaired cell viability, likely due to an increased oxidative stress. The obtained results suggest a possibility in the inflorescences from the Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties as source of bioactive compounds endowed with genoprotective and chemopreventive properties that could be harnessed as preventive or adjuvant healing strategies.

4.
Protein Sci ; 32(12): e4819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883077

RESUMO

Ferritin, a naturally occurring iron storage protein, has gained significant attention as a drug delivery platform due to its inherent biocompatibility and capacity to encapsulate therapeutic agents. In this study, we successfully genetically engineered human H ferritin by incorporating 4 or 6 tryptophan residues per subunit, strategically oriented towards the inner cavity of the nanoparticle. This modification aimed to enhance the encapsulation of hydrophobic drugs into the ferritin cage. Comprehensive characterization of the mutants revealed that only the variant carrying four tryptophan substitutions per subunit retained the ability to disassemble and reassemble properly. As a proof of concept, we evaluated the loading capacity of this mutant with ellipticine, a natural hydrophobic indole alkaloid with multimodal anticancer activity. Our data demonstrated that this specific mutant exhibited significantly higher efficiency in loading ellipticine compared to human H ferritin. Furthermore, to evaluate the versatility of this hydrophobicity-enhanced ferritin nanoparticle as a drug carrier, we conducted a comparative study by also encapsulating doxorubicin, a commonly used anticancer drug. Subsequently, we tested both ellipticine and doxorubicin-loaded nanoparticles on a promyelocytic leukemia cell line, demonstrating efficient uptake by these cells and resulting in the expected cytotoxic effect.


Assuntos
Antineoplásicos , Elipticinas , Nanopartículas , Humanos , Ferritinas/genética , Ferritinas/química , Apoferritinas/genética , Triptofano , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Linhagem Celular Tumoral
5.
Front Mol Biosci ; 10: 1332359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250735

RESUMO

The development of methods able to modulate the binding affinity between proteins and peptides is of paramount biotechnological interest in view of a vast range of applications that imply designed polypeptides capable to impair or favour Protein-Protein Interactions. Here, we applied a peptide design algorithm based on shape complementarity optimization and electrostatic compatibility and provided the first experimental in vitro proof of the efficacy of the design algorithm. Focusing on the interaction between the SARS-CoV-2 Spike Receptor-Binding Domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) receptor, we extracted a 23-residues long peptide that structurally mimics the major interacting portion of the ACE2 receptor and designed in silico five mutants of such a peptide with a modulated affinity. Remarkably, experimental KD measurements, conducted using biolayer interferometry, matched the in silico predictions. Moreover, we investigated the molecular determinants that govern the variation in binding affinity through molecular dynamics simulation, by identifying the mechanisms driving the different values of binding affinity at a single residue level. Finally, the peptide sequence with the highest affinity, in comparison with the wild type peptide, was expressed as a fusion protein with human H ferritin (HFt) 24-mer. Solution measurements performed on the latter constructs confirmed that peptides still exhibited the expected trend, thereby enhancing their efficacy in RBD binding. Altogether, these results indicate the high potentiality of this general method in developing potent high-affinity vectors for hindering/enhancing protein-protein associations.

6.
Cell Rep ; 41(12): 111861, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543136

RESUMO

Striated muscle is a highly organized structure composed of well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts. Here, we show how the combined use of spatially resolved transcriptomics and immunofluorescence can bridge this gap by enabling the unbiased identification of such domains and the characterization of their response to external perturbations. Using a spatiotemporal analysis, we follow changes in the transcriptome of specific domains in muscle in a model of denervation. Furthermore, our approach enables us to identify the spatial distribution and nerve dependence of atrophic signaling pathway and polyamine metabolism to glycolytic fibers. Indeed, we demonstrate that perturbations of polyamine pathway can affect muscle function. Our dataset serves as a resource for future studies of the mechanisms underlying skeletal muscle homeostasis and innervation.


Assuntos
Atrofia Muscular , Transcriptoma , Humanos , Atrofia Muscular/metabolismo , Transcriptoma/genética , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Poliaminas/metabolismo
7.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015136

RESUMO

Sideritis sipylea Boiss. (Fam. Lamiaceae) is an endemic plant of the North Aegean Islands (Greece), commonly known as ironwort. Traditionally, its aerial parts have been used to relieve several ailments, especially gastrointestinal disorders, however, with scant knowledge about the pharmacological basis. In the present study, an endemic S. sipylea Greek species from Lesvos Island has been characterized for phytochemical composition and biological activities, in order to give a possible scientific basis to its traditional use and to highlight a further nutraceutical interest as a source of bioactive phytochemicals and extracts. Three different fractions obtained from a methanolic extract of S. sipylea aerial parts by using ethyl acetate with 10 (S10), 20 (S20), and 50% (S50) methanol as fractionation solvents were phytochemically characterized. Moreover, their antioxidant power and cytoprotective activity in different human cell lines were evaluated. The phytochemical analysis highlighted the presence of flavonoids, iridoids, and phenolic acids in all the tested samples. Particularly, the S10 fraction mainly contained iridoids, while S20 and S50 lavandulifolioside and chlorogenic acid, respectively. The fractions also showed antioxidant properties, S10 and S20 being the most potent. When assessed in human cholangiocytes, they counteracted the cytotoxicity of the tBOOH pro-oxidant agent, by reducing ROS levels and affecting GSH antioxidant system. The present findings highlight a possible interest in S10 and S20 fractions from S. sipylea as sources of bioactive molecules and stimulate further studies in order to characterize their possible application for nutraceutical and pharmaceutical purposes.

8.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742969

RESUMO

Amine oxidases are enzymes belonging to the class of oxidoreductases that are widespread, from bacteria to humans. The amine oxidase from Lathyrus cicera has recently appeared in the landscape of biocatalysis, showing good potential in the green synthesis of aldehydes. This enzyme catalyzes the oxidative deamination of a wide range of primary amines into the corresponding aldehydes but its use as a biocatalyst is challenging due to the possible inactivation that might occur at high product concentrations. Here, we show that the enzyme's performance can be greatly improved by immobilization on solid supports. The best results are achieved using amino-functionalized magnetic microparticles: the immobilized enzyme retains its activity, greatly improves its thermostability (4 h at 75 °C), and can be recycled up to 8 times with a set of aromatic ethylamines. After the last reaction cycle, the overall conversion is about 90% for all tested substrates, with an aldehyde production ranging between 100 and 270 mg depending on the substrate used. As a proof concept, one of the aldehydes thus produced was successfully used for the biomimetic synthesis of a non-natural benzylisoquinoline alkaloid.


Assuntos
Lathyrus , Aldeídos , Aminas , Biocatálise , Enzimas Imobilizadas/metabolismo , Humanos , Lathyrus/metabolismo , Fenômenos Magnéticos , Monoaminoxidase/metabolismo , Oxirredutases/metabolismo
9.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163958

RESUMO

In the present study, the phytochemical composition and bioactivities of A. maroccanus (AM) and A. radiatus (AR), two ecotypes collected in the Demnate road and Essaouira regions, respectively, were studied to highlight a pharmacological interest and to enable possible pharmaceutical development. To this end, methanolic and ethyl acetate extracts were prepared for each ecotype by fractionation; next, their phytochemical composition was evaluated by spectrophotometric and chromatographic analysis. Moreover, in line with the available evidence for Anacyclus spp. and their traditional use, a screening of bioactivities, including antioxidant, hypoglycemic, antiglycative, chelating, and antibacterial activities, was performed. The extracts were characterized by high amounts of polyphenols, tannins, and flavonoids, especially in the methanolic extracts; these samples were also enriched in carotenoids despite a lower chlorophyll content. Chlorogenic acid and rutin were the major identified compounds. The extracts also showed interesting hypoglycemic, antiglycative, and antibacterial properties, although with differences in efficacy and potency. Present results provide more scientific basis to the ethnopharmacological uses of Anacyclus spp. and suggest a further interest in AM and AR ecotypes as natural sources of bioactive compounds and/or phytocomplexes for possible pharmaceutical and nutraceutical developments.


Assuntos
Asteraceae/genética , Asteraceae/metabolismo , Compostos Fitoquímicos/análise , Antibacterianos/farmacologia , Antioxidantes/química , Asteraceae/efeitos dos fármacos , Flavonoides/análise , Testes de Sensibilidade Microbiana , Marrocos , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Polifenóis/química , Taninos
10.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885717

RESUMO

The ß-isomer of hexachlorocyclohexane (ß-HCH) is a globally widespread pollutant that embodies all the physicochemical characteristics of organochlorine pesticides, constituting an environmental risk factor for a wide range of noncommunicable diseases. Previous in vitro studies from our group disclosed the carcinogenic potential of ß-HCH, which contributes to neoplastic transformation by means of multifaceted intracellular mechanisms. Considering the positive evidence regarding the protective role of natural bioactive compounds against pollution-induced toxicity, micronutrients from olive and tomato endowed with the capability of modulating ß-HCH cellular targets were tested. For this purpose, the solution obtained from a patented food supplement (No. EP2851080A1), referred to as Tomato and Olive Bioactive Compounds (TOBC), was administered to the androgen-sensitive prostate cancer cells LNCaP and different biochemical and cellular assays were performed to evaluate its efficiency. TOBC shows a dose-dependent significant chemoprotection by contrasting ß-HCH-induced intracellular responses such as STAT3 and AhR activation, disruption of AR signaling, antiapoptotic and proliferative activity, and increase in ROS production and DNA damage. These experimental outcomes identified TOBC as a suitable functional food to be included in a diet regimen aimed at defending cells from ß-HCH negative effects, recommending the development of tailored enriched formulations for exposed individuals.


Assuntos
Compostos Fitoquímicos/farmacologia , Neoplasias da Próstata/dietoterapia , Receptores Androgênicos/genética , Fator de Transcrição STAT3/genética , Androgênios/metabolismo , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hexaclorocicloexano/toxicidade , Humanos , Solanum lycopersicum/química , Masculino , Micronutrientes/química , Micronutrientes/farmacologia , Olea/química , Compostos Fitoquímicos/química , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/química , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos
11.
Biomolecules ; 11(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680172

RESUMO

Aldehydes are a class of carbonyl compounds widely used as intermediates in the pharmaceutical, cosmetic and food industries. To date, there are few fully enzymatic methods for synthesizing these highly reactive chemicals. In the present work, we explore the biocatalytic potential of an amino oxidase extracted from the etiolated shoots of Lathyrus cicera for the synthesis of value-added aldehydes, starting from the corresponding primary amines. In this frame, we have developed a completely chromatography-free purification protocol based on crossflow ultrafiltration, which makes the production of this enzyme easily scalable. Furthermore, we determined the kinetic parameters of the amine oxidase toward 20 differently substituted aliphatic and aromatic primary amines, and we developed a biocatalytic process for their conversion into the corresponding aldehydes. The reaction occurs in aqueous media at neutral pH in the presence of catalase, which removes the hydrogen peroxide produced during the reaction itself, contributing to the recycling of oxygen. A high conversion (>95%) was achieved within 3 h for all the tested compounds.


Assuntos
Aldeídos/síntese química , Amina Oxidase (contendo Cobre)/química , Aminas/química , Lathyrus/química , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/isolamento & purificação , Biocatálise , Concentração de Íons de Hidrogênio , Cinética , Lathyrus/enzimologia , Brotos de Planta/química , Brotos de Planta/enzimologia
12.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34517941

RESUMO

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Atividade Motora/genética , Atividade Motora/fisiologia , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Regulação para Baixo/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Biossíntese de Proteínas , Putrescina/farmacologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Espermidina/farmacologia
13.
Cancers (Basel) ; 13(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439311

RESUMO

The early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II-IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0-I, II and III-IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0-I) from late (III-IV) stages' CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III-IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV' FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients.

14.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207731

RESUMO

Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment. In this review, we analyzed what makes the brain a suitable site for the development of metastases and how this microenvironment, through the continuous release of neurotransmitters and amino acids in the extracellular milieu, is able to support the metabolic needs of metastasizing cells. We also suggested a possible role for amino acids released by the brain through the endothelial cells of the blood-brain barrier into the bloodstream in triggering the process of extravasation/invasion of the brain parenchyma.

15.
J Nanobiotechnology ; 19(1): 172, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107976

RESUMO

BACKGROUND: In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. RESULTS: Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. CONCLUSION: The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells.


Assuntos
Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Ferritinas/química , Leucemia Mieloide/tratamento farmacológico , Nanopartículas/química , Ácidos Nucleicos/química , Antígenos CD , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Linhagem Celular Tumoral , Ferritinas/genética , Humanos , MicroRNAs/química , MicroRNAs/farmacologia , Receptores da Transferrina
16.
Cell Death Dis ; 11(12): 1045, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303756

RESUMO

Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lisina/metabolismo , Camundongos Nus , Fases de Leitura Aberta/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/química , Peptídeos/metabolismo , Poliaminas/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/química
17.
Cell Death Dis ; 11(11): 1012, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243973

RESUMO

Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenilato Quinase/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Adenocarcinoma de Pulmão/patologia , Movimento Celular , Humanos
18.
Biomedicines ; 8(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207735

RESUMO

Organochlorine pesticides (OCPs) belong to a heterogeneous class of organic compounds blacklisted by the Stockholm Convention in 2009 due to their harmful impact on human health. Among OCPs, ß-hexachlorocyclohexane (ß-HCH) is one of the most widespread and, at the same time, poorly studied environmental contaminant. Due to its physicochemical properties, ß-HCH is the most hazardous of all HCH isomers; therefore, clarifying the mechanisms underlying its molecular action could provide further elements to draw the biochemical profile of this OCP. For this purpose, LNCaP and HepG2 cell lines were used as models and were subjected to immunoblot, immunofluorescence, and RT-qPCR analysis to follow the expression and mRNA levels, together with the distribution, of key biomolecules involved in the intracellular responses to ß-HCH. In parallel, variations in redox homeostasis and cellular bioenergetic profile were monitored to have a complete overview of ß-HCH effects. Obtained results strongly support the hypothesis that ß-HCH could be an endocrine disrupting chemical as well as an activator of AhR signaling, promoting the establishment of an oxidative stress condition and a cellular metabolic shift toward aerobic glycolysis. In this altered context, ß-HCH can also induce DNA damage through H2AX phosphorylation, demonstrating its multifaceted mechanisms of action.

19.
Molecules ; 25(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050326

RESUMO

Resveratrol (3,5,4'-trihydroxystilbene) is a natural compound that can be found in high concentrations in red wine and in many typical foods found in human diet. Over the past decades, resveratrol has been widely investigated for its potential beneficial effects on human health. At the same time, numerous analytical methods have been developed for the quantitative determination of resveratrol isomers in oenological and food matrices. In the present work, we developed a very fast and sensitive GC-MS method for the determination of resveratrol in red wine based on ethylchloroformate derivatization. Since this reaction occurs directly in the water phase during the extraction process itself, it has the advantage of significantly reducing the overall processing time for the sample. This method presents low limits of quantification (LOQ) (25 ng/mL and 50 ng/mL for cis- and trans-resveratrol, respectively) and excellent accuracy and precision. Ethylchloroformate derivatization was successfully applied to the analysis of resveratrol isomers in a selection of 15 commercial Italian red wines, providing concentration values comparable to those reported in other studies. As this method can be easily extended to other classes of molecules present in red wine, it allows further development of new GC-MS methods for the molecular profiling of oenological matrices.


Assuntos
Ésteres do Ácido Fórmico/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Resveratrol/análise , Resveratrol/química , Vinho/análise , Reprodutibilidade dos Testes
20.
Biomolecules ; 10(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036250

RESUMO

The cytochrome P450 OleP catalyzes the epoxidation of aliphatic carbons on both the aglycone 8.8a-deoxyoleandolide (DEO) and the monoglycosylated L-olivosyl-8.8a-deoxyoleandolide (L-O-DEO) intermediates of oleandomycin biosynthesis. We investigated the substrate versatility of the enzyme. X-ray and equilibrium binding data show that the aglycone DEO loosely fits the OleP active site, triggering the closure that prepares it for catalysis only on a minor population of enzyme. The open-to-closed state transition allows solvent molecules to accumulate in a cavity that forms upon closure, mediating protein-substrate interactions. In silico docking of the monoglycosylated L-O-DEO in the closed OleP-DEO structure shows that the L-olivosyl moiety can be hosted in the same cavity, replacing solvent molecules and directly contacting structural elements involved in the transition. X-ray structures of aglycone-bound OleP in the presence of L-rhamnose confirm the cavity as a potential site for sugar binding. All considered, we propose L-O-DEO as the optimal substrate of OleP, the L-olivosyl moiety possibly representing the molecular wedge that triggers a more efficient structural response upon substrate binding, favoring and stabilizing the enzyme closure before catalysis. OleP substrate versatility is supported by structural solvent molecules that compensate for the absence of a glycosyl unit when the aglycone is bound.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Lactonas/química , Catálise , Cristalografia por Raios X , Domínios Proteicos , Ramnose/química , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...